
 @armeria_project line/armeria

Trustin Lee, LINE
Oct 2019

Armeria
A Microservice Framework
Well-suited Everywhere

Armeria
A Microservice Framework
Well-suited Everywhere

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

A microservice framework, again?

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Yeah, but for good reasons!
● Simple & User-friendly
● Asynchronous & Reactive
● 1st-class RPC support

– … with better-than-upstream experience

● Unopinionated integration & migration
● Less points of failure

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

How simple is it, then?

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Hello, world!
Server server = Server.builder()
 .http(8080)
 .https(8443)
 .tlsSelfSigned()
 .haproxy(8080)
 .service("/hello/:name",
 (ctx, req) -> HttpResponse.of("Hello, %s!",
 ctx.pathParam("name")))
 .build();
server.start();

Protocol auto-detection at 8080

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Hello, world – Annotated
Server server = Server.builder()
 .http(8080)
 .annotatedService(new Object() {
 @Get("/hello/:name")
 public String hello(@Param String name) {
 return String.format("Hello, %s!", name);
 }
 })
 .build();
server.start();

● Full example:
https://github.com/line/armeria-examples/tree/master/annotated-http-service

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria-examples/tree/master/annotated-http-service

 @armeria_project line/armeria

Server server = Server.builder()
 .http(8080)
 .service(GrpcService.builder()
 .addService(new GrpcHelloService())
 .build())
 .build();

class GrpcHelloService
 extends HelloServiceGrpc.HelloServiceImplBase {
 ...
}

● Full example:
https://github.com/line/armeria-examples/tree/master/grpc-service

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria-examples/tree/master/grpc-service

 @armeria_project line/armeria

Thrift
Server server = Server.builder()
 .http(8080)
 .service("/hello",
 THttpService.of(new ThriftHelloService()))
 .build();

class ThriftHelloService implements HelloService.AsyncIface {
 ...
}

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Mix & Match!
Server server = Server.builder()
 .http(8080)
 .service("/hello/rest",
 (ctx, req) -> HttpResponse.of("Hello, world!"))
 .service("/hello/thrift",
 THttpService.of(new ThriftHelloService()))
 .service(GrpcService.builder()
 .addService(new GrpcHelloService())
 .build())
 .build();

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Why going asynchronous & reactive?

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Pending requests (Queue)

One fine day of
a synchronous microservice

Shard 1

Shard 2

Shard 3

Thread 1

Thread 2

Thread 3

Thread 4

Read
S1 Read

S2
Read
S3 Read

S1 Read
S2

Read
S3

Read
S1

Read
S3

Read
S1

Read
S2

Read
S3

Read
S2

Read
S1

Read
S2

Read
S3

Read
S1

Time spent for each shard

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Pending requests (Queue)

Shard 2 ruins the fine day…

Shard 1

Shard 2

Shard 3

Thread 1

Thread 2

Thread 3

Thread 4

Read
S1 Read

S2
Read
S3 Read

S1 Read
S2

Read
S3

Read
S1

Read
S3

Read
S1

Read
S2

Read
S3

Read
S2

Read
S1

Read
S2

Read
S3

Read
S1

Timeout!

Time spent for each shard

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Pending requests (Queue)

Shard 1 & 3: Why are no requests coming?
 Workers: We’re busy waiting for Shard 2.

Shard 1

Shard 2

Shard 3

Thread 1

Thread 2

Thread 3

Thread 4

Read
S1 Read

S2
Read
S3 Read

S1 Read
S2

Read
S3

Read
S1

Read
S3

Read
S1

Read
S2

Read
S3

Read
S2

Read
S2

Read
S2

Read
S2

Read
S2

Timeouts!Timeouts!Timeouts!Timeouts!

Time spent for each shard

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

… propagating everywhere!

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

How can we solve this?
● Add more CPUs?

– They are very idle.

● Add more threads?
– They will all get stuck with Shard 2 in no time.
– Waste of CPU cycles & memory – context switches & call stack

● Result:
– Fragile system that falls apart even on a tiny backend failure
– Inefficient system that takes more memory and CPU

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

How can we solve this? (cont’d)

● Can work around, must keep tuning and adding hacks, e.g.
– Increasing # of threads & reducing call stack
– Prepare thread pools for each shard

● Shall we just go asynchronous, please?
– Less tuning points

● Memory size & # of event loops

– Better resource utilization with concurrent calls + less threads

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Problems with large payloads
● We solved blocking problem with asynchronous programming,

but can we send 10MB personalized response to 100K clients?
– Can’t hold that much in RAM – 10MB × 100K = 1TB

● What if we · they send too fast?
– Different bandwidth & processing power

● We need ‘just enough buffering.’
– Expect OutOfMemoryError otherwise.

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Traditional

Traditional vs. Reactive

Reactive

A bunch of
clients

D
A
T
A

D
A
T
A

D
A
T
A

D’
A’
T’
A’

D
A
T
A

D’
A’
T’
A’

D
A
T
A

D’
A’
T’
A’

Entire data

One-by-one

D’
A’
T’
A’

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Reactive HTTP/2 proxy in 6 lines
// Use Armeria's async & reactive HTTP/2 client.
HttpClient client = HttpClient.of("h2c://backend");
Server server = Server.builder()
 .http(8080)
 .service("prefix:/",
 // Forward all requests reactively.
 (ctx, req) -> client.execute(req))
 .build();

● Full example:
https://github.com/line/armeria-examples/tree/master/proxy-server

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria-examples/tree/master/proxy-server

 @armeria_project line/armeria

1st-class RPC support
with better-than-upstream experience

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

RPC vs. HTTP impedance mismatch
● RPC has been hardly a 1st-class citizen in web frameworks.

– Which method was called with what parameters?
– What’s the return value? Did it succeed?

POST /some_service HTTP/1.1
Host: example.com
Content-Length: 96

<binary request>

HTTP/1.1 200 OK
Host: example.com
Content-Length: 192

<binary response>
Failed RPC call

192.167.1.2 - - [10/Oct/2000:13:55:36 -0700]
"POST /some_service HTTP/1.1" 200 2326

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Killing many birds with Structured Logging
● Timings

– Low-level timings, e.g. DNS · Socket
– Request · Response time

● Application-level
– Custom attributes

● User
● Client type
● Region, …

● HTTP-level
– Request · Response headers
– Content preview, e.g. first 64 bytes

● RPC-level
– Service type
– method and parameters
– Return values and exceptions

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

First things first – Decorators
GrpcService.builder().addService(new MyServiceImpl()).build()
 .decorate((delegate, ctx, req) -> {
 ctx.log().addListener(log -> {
 ...
 }, RequestLogAvailability.COMPLETE);

 return delegate.serve(ctx, req);
 });

● Decorators are used everywhere in
– Most features mentioned in this presentation are decorators.

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Async retrieval of structured logs

GrpcService.builder().addService(new MyServiceImpl()).build()
 .decorate((delegate, ctx, req) -> {
 ctx.log().addListener(log -> {
 ...
 }, RequestLogAvailability.COMPLETE);

 return delegate.serve(ctx, req);
 });

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Async retrieval of structured logs (cont’d)

ctx.log().addListener(log -> {
 long reqStartTime = log.requestStartTimeMillis();
 long resStartTime = log.responseStartTimeMillis();

 RpcRequest rpcReq = (RpcRequest) log.requestContent();
 if (rpcReq != null) {
 String method = rpcReq.method();
 List<Object> params = rpcReq.params();

 RpcResponse rpcRes = (RpcResponse) log.responseContent();
 if (rpcRes != null) {
 Object result = rpcRes.getNow(null);
 }
 }
}, RequestLogAvailability.COMPLETE);

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Making a debug call
● Sending an ad-hoc query in RPC is hard.

– Find a proper service definition, e.g. .thrift or .proto files
– Set up code generator, build, IDE, etc.
– Write some code that makes an RPC call.

● HTTP in contrast:
– cURL, telnet command, web-based tools and more.

● What if we build something more convenient and collaborative?

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Armeria documentation service
● Enabled by adding DocService
● Browse and invoke RPC services in an server

– No fiddling with binary payloads
– Send a request without writing code

● Supports gRPC, Thrift and annotated services
● We have a plan to add:

– Metric monitoring console
– Runtime configuration editor, e.g. logger level

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

● Share the URL to reproduce a call.

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Cool features not available in upstream
● gRPC

– Works on both HTTP/1 and 2
– gRPC-Web support, i.e. can call gRPC services from JavaScript frontends

● Thrift
– HTTP/2, TTEXT (human-readable REST-ish JSON)

● Can leverage decorators
– Structured logging, Metric collection, Distributed tracing, Authentication
– CORS, SAML, Request throttling, Circuit breakers, Automatic retries, …

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Cool features not available in upstream
● Can mix gRPC, Thrift, REST, Tomcat, Jetty, …

– on a single HTTP port & single JVM
– without any proxies
– REST API – Static files
– Exposing metrics – Health-check requests from load balancers
– Traditional JEE webapps

● Share common logic between different endpoints!

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Unopinionated
integration & migration

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Armeria ❤ What You ❤
● Use your favorite tech, not ours:

– DI – , Guice, Dagger, …
– Protocols – , Thrift, REST, …

● Choose only what you want:
– Most features are optional.
– Compose and customize at your will.

● Your application grows with you, not by its own.

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Case of
● Using Thrift since 2015
● Migrated from Thrift to gRPC

– Can run both while clients are switching

● Leverages built-in non-RPC services:
– PrometheusExpositionService
– HealthCheckService

– BraveService – Distributed tracing with
– DocService

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

● Full migration story: https://sched.co/L715

Case of

https://twitter.com/armeria_project
https://github.com/line/armeria
https://sched.co/L715

 @armeria_project line/armeria

Case of
● In-app emoji · sticker store (50k-100k reqs/sec)
● Before:

– Spring Boot + Tomcat (HTTP/1) + Thrift on Servlet
– Apache HttpClient

● After – Migrate keeping what you love
– Spring Boot + (HTTP/2)
– Keep using Tomcat via TomcatService for the legacy
– Thrift served directly & asynchronously = No Tomcat overhead
– Armeria’s HTTP/2 client w/ load-balancing

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Case of

● Asynchronification of 3 synchronous calls

(μs)

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Case of

● Significant reduction of inter-service connections

(# of conns)

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Case of

● Distributed tracing with by just adding BraveService
● Full story: https://www.slideshare.net/linecorp/line-zipkin

https://twitter.com/armeria_project
https://github.com/line/armeria
https://www.slideshare.net/linecorp/line-zipkin

 @armeria_project line/armeria

Case of
● Firm banking gateway

– Talking to Korean banks via VAN (value-added network)

● +
– Mostly non-null API
– Using @Nullable annotation extensibly

● Spring WebFlux + gRPC
● Armeria Replaces Spring’s network layer (reactor-netty)
● gRPC served directly = No WebFlux overhead

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Less points of failure
Client-side load-balancing

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Load balancers · Reverse proxies
● Pros

– Distributes load
– Offloads TLS overhead
– Automatic health checks
– Service discovery (?)

● Cons
– More points of failure
– Increased hops · latency
– Uneven load distribution
– Cost of operation
– Health check lags

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Client-side load balancing
● Client-side load balancing

– Chooses endpoints autonomously
– Service discovery – DNS, , , …
– Near real-time health checks
– Less points of failure

● Proxy-less Armeria server
– OpenSSL-based high-performance TLS
– Netty + /dev/epoll
– Assemble your services into a single port + single JVM!

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

HTTP/2 load distribution at

● Full migration story:
https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria
-to-lines-authentication-system

https://twitter.com/armeria_project
https://github.com/line/armeria
https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria-to-lines-authentication-system
https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria-to-lines-authentication-system

 @armeria_project line/armeria

Near real-time health check
● Leverage HTTP/2 + long-polling

– Significantly reduced number of health check requests, e.g. every 10s vs. 5m
– Immediate notification of health status

● Server considered unhealthy
– On disconnection
– On server notification, e.g. graceful shutdown, self-test failure

● Fully backwards-compatible
– Activated only when server responds with a special header

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

// Kubernetes-style service discovery + long polling health check
EndpointGroup group = HealthCheckedEndpointGroup.of(
 DnsServiceEndpointGroup.of("my-service.cluster.local"),
 "/internal/healthcheck");
// Register the group into the registry.
EndpointGroupRegistry.register("myService", group, WEIGHTED_ROUND_ROBIN);
// Create an HTTP client with auto-retry and circuit breaker.
HttpClient client = HttpClient.builder("http://group:myService")
 .decorator(RetryingHttpClient.newDecorator(onServerErrorStatus()))
 .decorator(CircuitBreakerHttpClient.newDecorator(...))
 .build();
// Send a request.
HttpResponse res = client.get("/hello/armeria");

Client-side load-balancing with
auto-retry and circuit breaker in 8 lines

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Future work
Consider joining us!

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

The road to 1.0 (and beyond)

● Post-1.0
– Kotlin · Scala DSL
– Evolving DocService to
DashboardService

– More transports & protocols
● Web Sockets, UNIX domain sockets,

Netty handlers, …

– More decorators
– More service discovery mechanisms

● Eureka, Consul, etcd, …

– OpenAPI spec (.yml) generator
– Performance optimization

● Currently at 0.95
● Hoping to release before the end of 2019
● API stabilization · clean-up

https://twitter.com/armeria_project
https://github.com/line/armeria

 @armeria_project line/armeria

Meet us at GitHub

github.com/line/armeria
line.github.io/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria
https://line.github.io/armeria/

