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A microservice framework, again?
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Yeah, but for good reasons!
● Simple & User-friendly
● Asynchronous & Reactive
● 1st-class RPC support

– … with better-than-upstream experience

● Unopinionated integration & migration
● Less points of failure

https://twitter.com/armeria_project
https://github.com/line/armeria


 @armeria_project    line/armeria

How simple is it, then?
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Hello, world!
Server server = Server.builder()
    .http(8080)
    .https(8443)
    .tlsSelfSigned()
    .haproxy(8080)
    .service("/hello/:name",
             (ctx, req) -> HttpResponse.of("Hello, %s!", 
                                           ctx.pathParam("name")))
    .build();
server.start();

Protocol auto-detection at 8080

https://twitter.com/armeria_project
https://github.com/line/armeria
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Hello, world – Annotated
Server server = Server.builder()
    .http(8080)
    .annotatedService(new Object() {
        @Get("/hello/:name")
        public String hello(@Param String name) {
            return String.format("Hello, %s!", name);
        }
    })
    .build();
server.start();

● Full example:
https://github.com/line/armeria-examples/tree/master/annotated-http-service

https://twitter.com/armeria_project
https://github.com/line/armeria
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Server server = Server.builder()
    .http(8080)
    .service(GrpcService.builder()
                        .addService(new GrpcHelloService())
                        .build())
    .build();

class GrpcHelloService
    extends HelloServiceGrpc.HelloServiceImplBase {
    ...
}

● Full example:
https://github.com/line/armeria-examples/tree/master/grpc-service

https://twitter.com/armeria_project
https://github.com/line/armeria
https://github.com/line/armeria-examples/tree/master/grpc-service
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Thrift
Server server = Server.builder()
    .http(8080)
    .service("/hello",
             THttpService.of(new ThriftHelloService()))
    .build();

class ThriftHelloService implements HelloService.AsyncIface {
    ...
}

https://twitter.com/armeria_project
https://github.com/line/armeria
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Mix & Match!
Server server = Server.builder()
    .http(8080)
    .service("/hello/rest",
             (ctx, req) -> HttpResponse.of("Hello, world!"))
    .service("/hello/thrift",
             THttpService.of(new ThriftHelloService()))
    .service(GrpcService.builder()
                        .addService(new GrpcHelloService())
                        .build())
    .build();

https://twitter.com/armeria_project
https://github.com/line/armeria


 @armeria_project    line/armeria

Why going asynchronous & reactive?

https://twitter.com/armeria_project
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Pending requests (Queue)
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a synchronous microservice
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Pending requests (Queue)

Shard 2 ruins the fine day…
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Pending requests (Queue)

Shard 1 & 3: Why are no requests coming?
       Workers: We’re busy waiting for Shard 2.
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… propagating everywhere!
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How can we solve this?
● Add more CPUs?

– They are very idle.

● Add more threads?
– They will all get stuck with Shard 2 in no time.
– Waste of CPU cycles & memory – context switches & call stack

● Result:
– Fragile system that falls apart even on a tiny backend failure
– Inefficient system that takes more memory and CPU

https://twitter.com/armeria_project
https://github.com/line/armeria
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How can we solve this? (cont’d)

● Can work around, must keep tuning and adding hacks, e.g.
– Increasing # of threads & reducing call stack
– Prepare thread pools for each shard

● Shall we just go asynchronous, please?
– Less tuning points

● Memory size & # of event loops

– Better resource utilization with concurrent calls + less threads

https://twitter.com/armeria_project
https://github.com/line/armeria
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Problems with large payloads 
● We solved blocking problem with asynchronous programming,

but can we send 10MB personalized response to 100K clients?
– Can’t hold that much in RAM – 10MB × 100K = 1TB

● What if we · they send too fast?
– Different bandwidth & processing power

● We need ‘just enough buffering.’
– Expect OutOfMemoryError otherwise.

https://twitter.com/armeria_project
https://github.com/line/armeria
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Traditional

Traditional vs. Reactive
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Reactive HTTP/2 proxy in 6 lines
// Use Armeria's async & reactive HTTP/2 client.
HttpClient client = HttpClient.of("h2c://backend");
Server server = Server.builder()
    .http(8080)
    .service("prefix:/",
             // Forward all requests reactively.
             (ctx, req) -> client.execute(req))
    .build();

● Full example:
https://github.com/line/armeria-examples/tree/master/proxy-server

https://twitter.com/armeria_project
https://github.com/line/armeria
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1st-class RPC support
with better-than-upstream experience

https://twitter.com/armeria_project
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RPC vs. HTTP impedance mismatch
● RPC has been hardly a 1st-class citizen in web frameworks.

– Which method was called with what parameters?
– What’s the return value? Did it succeed?

POST /some_service HTTP/1.1
Host: example.com
Content-Length: 96

<binary request>

HTTP/1.1 200 OK
Host: example.com
Content-Length: 192

<binary response>
Failed RPC call

192.167.1.2 - - [10/Oct/2000:13:55:36 -0700]
"POST /some_service HTTP/1.1" 200 2326 

https://twitter.com/armeria_project
https://github.com/line/armeria
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Killing many birds with Structured Logging
● Timings

– Low-level timings, e.g. DNS · Socket
– Request · Response time

● Application-level
– Custom attributes

● User
● Client type
● Region, …

● HTTP-level
– Request · Response headers
– Content preview, e.g. first 64 bytes

● RPC-level
– Service type
– method and parameters
– Return values and exceptions

https://twitter.com/armeria_project
https://github.com/line/armeria
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First things first – Decorators
GrpcService.builder().addService(new MyServiceImpl()).build()
    .decorate((delegate, ctx, req) -> {
        ctx.log().addListener(log -> {
            ...
        }, RequestLogAvailability.COMPLETE);

        return delegate.serve(ctx, req);
    });

● Decorators are used everywhere in
– Most features mentioned in this presentation are decorators.

https://twitter.com/armeria_project
https://github.com/line/armeria
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Async retrieval of structured logs

GrpcService.builder().addService(new MyServiceImpl()).build()
    .decorate((delegate, ctx, req) -> {
        ctx.log().addListener(log -> {
            ...
        }, RequestLogAvailability.COMPLETE);

        return delegate.serve(ctx, req);
    });

https://twitter.com/armeria_project
https://github.com/line/armeria
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Async retrieval of structured logs (cont’d)

ctx.log().addListener(log -> {
    long reqStartTime = log.requestStartTimeMillis();
    long resStartTime = log.responseStartTimeMillis();

    RpcRequest rpcReq = (RpcRequest) log.requestContent();
    if (rpcReq != null) {
        String method = rpcReq.method();
        List<Object> params = rpcReq.params();

        RpcResponse rpcRes = (RpcResponse) log.responseContent();
        if (rpcRes != null) {
            Object result = rpcRes.getNow(null);
        }
    }
}, RequestLogAvailability.COMPLETE);

https://twitter.com/armeria_project
https://github.com/line/armeria
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Making a debug call
● Sending an ad-hoc query in RPC is hard.

– Find a proper service definition, e.g. .thrift or .proto files
– Set up code generator, build, IDE, etc.
– Write some code that makes an RPC call.

● HTTP in contrast:
– cURL, telnet command, web-based tools and more.

● What if we build something more convenient and collaborative?

https://twitter.com/armeria_project
https://github.com/line/armeria
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Armeria documentation service
● Enabled by adding DocService
● Browse and invoke RPC services in an                            server

– No fiddling with binary payloads
– Send a request without writing code

● Supports gRPC, Thrift and annotated services
● We have a plan to add:

– Metric monitoring console
– Runtime configuration editor, e.g. logger level

https://twitter.com/armeria_project
https://github.com/line/armeria
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● Share the URL to reproduce a call.

https://twitter.com/armeria_project
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Cool features not available in upstream
● gRPC

– Works on both HTTP/1 and 2
– gRPC-Web support, i.e. can call gRPC services from JavaScript frontends

● Thrift
– HTTP/2, TTEXT (human-readable REST-ish JSON)

● Can leverage                           decorators
– Structured logging, Metric collection, Distributed tracing, Authentication
– CORS, SAML, Request throttling, Circuit breakers, Automatic retries, …

https://twitter.com/armeria_project
https://github.com/line/armeria
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Cool features not available in upstream
● Can mix gRPC, Thrift, REST, Tomcat, Jetty, …

– on a single HTTP port & single JVM
– without any proxies
– REST API                               –  Static files
– Exposing metrics                –  Health-check requests from load balancers
– Traditional JEE webapps

● Share common logic between different endpoints!

https://twitter.com/armeria_project
https://github.com/line/armeria
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Unopinionated
integration & migration

https://twitter.com/armeria_project
https://github.com/line/armeria
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Armeria ❤ What You ❤
● Use your favorite tech, not ours:

– DI –                       , Guice, Dagger, …
– Protocols –             , Thrift, REST, …

● Choose only what you want:
– Most features are optional.
– Compose and customize at your will.

● Your application grows with you, not by its own.

https://twitter.com/armeria_project
https://github.com/line/armeria
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Case of                   
● Using Thrift since 2015
● Migrated from Thrift to gRPC

– Can run both while clients are switching

● Leverages built-in non-RPC services:
– PrometheusExpositionService
– HealthCheckService

– BraveService – Distributed tracing with
– DocService

https://twitter.com/armeria_project
https://github.com/line/armeria
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● Full migration story: https://sched.co/L715

Case of                   

https://twitter.com/armeria_project
https://github.com/line/armeria
https://sched.co/L715
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Case of          
● In-app emoji · sticker store (50k-100k reqs/sec)
● Before:

– Spring Boot + Tomcat (HTTP/1) + Thrift on Servlet
– Apache HttpClient

● After – Migrate keeping what you love
– Spring Boot +                            (HTTP/2)
– Keep using Tomcat via TomcatService for the legacy
– Thrift served directly & asynchronously = No Tomcat overhead
– Armeria’s HTTP/2 client w/ load-balancing

https://twitter.com/armeria_project
https://github.com/line/armeria
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Case of          

● Asynchronification of 3 synchronous calls

(μs)

https://twitter.com/armeria_project
https://github.com/line/armeria


 @armeria_project    line/armeria

Case of          

● Significant reduction of inter-service connections

(# of conns)

https://twitter.com/armeria_project
https://github.com/line/armeria
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Case of          

● Distributed tracing with                      by just adding BraveService
● Full story: https://www.slideshare.net/linecorp/line-zipkin

https://twitter.com/armeria_project
https://github.com/line/armeria
https://www.slideshare.net/linecorp/line-zipkin
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Case of                            
● Firm banking gateway

– Talking to Korean banks via VAN (value-added network)

●                    +
– Mostly non-null API
– Using @Nullable annotation extensibly

● Spring WebFlux + gRPC
● Armeria Replaces Spring’s network layer (reactor-netty)
● gRPC served directly = No WebFlux overhead

                              

https://twitter.com/armeria_project
https://github.com/line/armeria
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Less points of failure
Client-side load-balancing

https://twitter.com/armeria_project
https://github.com/line/armeria
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Load balancers · Reverse proxies
● Pros

– Distributes load
– Offloads TLS overhead
– Automatic health checks
– Service discovery (?)

● Cons
– More points of failure
– Increased hops · latency
– Uneven load distribution
– Cost of operation
– Health check lags

https://twitter.com/armeria_project
https://github.com/line/armeria
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Client-side load balancing
● Client-side load balancing

– Chooses endpoints autonomously
– Service discovery – DNS,                                 ,                                     , …
– Near real-time health checks
– Less points of failure

● Proxy-less Armeria server
– OpenSSL-based high-performance TLS
–        Netty + /dev/epoll
– Assemble your services into a single port + single JVM!

https://twitter.com/armeria_project
https://github.com/line/armeria
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HTTP/2 load distribution at             

● Full migration story: 
https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria
-to-lines-authentication-system

https://twitter.com/armeria_project
https://github.com/line/armeria
https://speakerdeck.com/line_developers/lesson-learned-from-the-adoption-of-armeria-to-lines-authentication-system
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Near real-time health check
● Leverage HTTP/2 + long-polling

– Significantly reduced number of health check requests, e.g. every 10s vs. 5m
– Immediate notification of health status

● Server considered unhealthy
– On disconnection
– On server notification, e.g. graceful shutdown, self-test failure

● Fully backwards-compatible
– Activated only when server responds with a special header

https://twitter.com/armeria_project
https://github.com/line/armeria
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// Kubernetes-style service discovery + long polling health check
EndpointGroup group = HealthCheckedEndpointGroup.of(
        DnsServiceEndpointGroup.of("my-service.cluster.local"),
        "/internal/healthcheck");
// Register the group into the registry.
EndpointGroupRegistry.register("myService", group, WEIGHTED_ROUND_ROBIN);
// Create an HTTP client with auto-retry and circuit breaker.
HttpClient client = HttpClient.builder("http://group:myService")
    .decorator(RetryingHttpClient.newDecorator(onServerErrorStatus()))
    .decorator(CircuitBreakerHttpClient.newDecorator(...)) 
    .build();
// Send a request.
HttpResponse res = client.get("/hello/armeria");

Client-side load-balancing with
auto-retry and circuit breaker in 8 lines

https://twitter.com/armeria_project
https://github.com/line/armeria
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Future work
Consider joining us!

https://twitter.com/armeria_project
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The road to 1.0 (and beyond)

● Post-1.0
– Kotlin · Scala DSL
– Evolving DocService to 
DashboardService

– More transports & protocols
● Web Sockets, UNIX domain sockets,

Netty handlers, …

– More decorators
– More service discovery mechanisms

● Eureka, Consul, etcd, …

– OpenAPI spec (.yml) generator
– Performance optimization

● Currently at 0.95
● Hoping to release before the end of 2019
● API stabilization · clean-up

https://twitter.com/armeria_project
https://github.com/line/armeria
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Meet us at GitHub

github.com/line/armeria
line.github.io/armeria

https://twitter.com/armeria_project
https://github.com/line/armeria
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